On truncations for weakly ergodic inhomogeneous birth and death processes
نویسندگان
چکیده
We investigate a class of exponentially weakly ergodic inhomogeneous birth and death processes. We consider special transformations of the reduced intensity matrix of the process and obtain uniform (in time) error bounds of truncations. Our approach also guarantees that we can find limiting characteristics approximately with an arbitrarily fixed error. As an example, we obtain the respective bounds of the truncation error for an Mt/Mt/S queue for any number of servers S. Arbitrary intensity functions instead of periodic ones can be considered in the same manner.
منابع مشابه
Two-Sided Truncations Of Inhomogeneous Birth-Death Processes
We consider a class of inhomogeneous birth-death queueing models and obtain uniform approximation bounds of two-sided truncations. Some examples are considered. Our approach to truncations of the state space can be used in modeling information flows related to high-performance computing. INTRODUCTION It is well known that explicit expressions for the probability characteristics of stochastic bi...
متن کاملErgodic Theorems in Demography
The ergodic theorems of demography describe the properties of a product of certain nonnegative matrices, in the limit as the number of matrix factors in the product becomes large. This paper reviews these theorems and, where possible, their empirical usefulness. The strong ergodic theorem of demography assumes fixed age-specific birth and death rates. An approach to a stable age structure and t...
متن کاملOn Truncations For SZK Model
We consider a class of inhomogeneous Markovian queueing models with batch arrivals and group services. Bounds on the truncation errors in weak ergodic case are obtained. Two concrete queueing models are studied as examples.
متن کاملA Mean Ergodic Theorem For Asymptotically Quasi-Nonexpansive Affine Mappings in Banach Spaces Satisfying Opial's Condition
متن کامل
Error Bounds for Last-column-block-augmented Truncations of Block-structured Markov Chains
This paper discusses the error estimation of the last-column-block-augmented northwest-corner truncation (LC-block-augmented truncation, for short) of block-structured Markov chains (BSMCs) in continuous time. We first derive upper bounds for the absolute difference between the time-averaged functionals of a BSMC and its LC-block-augmented truncation, under the assumption that the BSMC satisfie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computer Science
دوره 24 شماره
صفحات -
تاریخ انتشار 2014